6x+7√(x−5)(x−4)=6x+7√x2−9x+20
Let 6x+7=Addx(x2−9x+20)+B
⇒6x+7=A(2x−9)+B
Equating the coefficients of x and constant term, we obtain
2A=6⇒A=3
& −9A+B=7⇒B=34
∴6x+7=3(2x−9)+34
⇒∫6x+7√x2−9x+20=∫3(2x−9)+34√x2−9x+20dx
=3∫2x−9√x2−9x+20dx+34∫1√x2−9x+20dx
Let I1=∫2x−9√x2−9x+20dx and I2=1√x2−9x+20dx
∴∫6x+7√x2−9x+20=3I1+34I2 ..........(1)
Then,
I1=∫2x−9√x2−9x+20dx
Let x2−9x+20=t
⇒(2x−9)dx=dt
⇒I1=dt√t
I1=2√t
I1=2√x2−9x+20 ......(2)
and I2=∫1√x2−9x+20dx
x2−9x+20 can be written as x2−9x+20+814−814
Therefore,
x2−9x+20+814−814
=(x−92)2−14
=(x−92)2−(12)2
⇒I2=∫1√(x−92)2−(12)2dx
⇒I2=log∣∣∣(x−92)+√x2−9x+20∣∣∣ ........(3)
Substituting equations (2) and (3) in (1), we obtain
∫6x+7√x2−9x+20dx=3[2√x29x+20]+34log[(x−92)+√x2−9x+20]+C
=6√x2−9x+20+34log[2√x29x+20]+34log[(x−92)+√x2−9x+20]+C