wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the function sin8xcos8x12sin2xcos2x

Open in App
Solution

sin8xcos8x12sin2xcos2x=(sin4x+cos4x)(sin4xcos4x)sin2x+cos2xsin2xcos2xsin2xcos2x
=(sin4x+cos4x)(sin2x+cos2x)(sin2xcos2x)(sin2xsin2xcos2x)+(cos2xsin2xcos2x)
=(sin4x+cos4x)(sin4xcos2x)sin2x(1cos2x)+cos2x(1sin2x)
=(sin4x+cos4x)(cos2xsin2x)(sin4x+cos4x)=cos2x
sin8xcos8x12sin2xcos2xdx=cos2xdx=sin2x2+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon