Let x+2=Addx(4x−x2)+B
⇒x+2=A(4−2x)+B
Equating the coefficients of x and constant term on both sides, we obtain
−2A=1⇒A=12
& 4A+B=2⇒B=4
⇒(x+2)=−12(4−2x)+4
∴∫x+2√4x−x2dx=∫−12(4−2x)+4√4x−x2dx
=−12∫4−2x√4x−x2dx+4∫1√4x−x2dx
Let I1=∫4−2x√4x−x2dx and I2=∫1√4x−x2dx
∴∫x+2√4x−x2dx=−12I1+4I2 ........ (1)
Then, I1=∫4−2x√4x−x2dx
Let 4x−x2=t
⇒(4−2x)dx=dt
⇒I1=∫1√tdt=2√t=2√4x−x2 .......... (2)
I2=∫1√4x−x2dx
⇒4x−x2=−(−4x+x2)
=(−4x+x2+4−4)
=4−(x−2)2
=(2)2−(x−2)2
∴I2=∫1√(2)2−(x−2)2dx=sin−1(x−22) .......... (3)
Using equations (2) and (3) in (1), we obtain
∫x+2√4x−x2dx=−12(2√4x−x2)+4sin−1(x−22)+C
=−√4x−x2+4sin−1(x−22)+C