∫(x+2)√x2+2x+3dx=12∫2(x+2)√x2+2x+3dx
=12∫2x+4√x2+2x+3dx
=12∫2x+2√x2+2x+3dx+12∫2√x2+2x+3dx
=12∫2x+2√x2+2x+3dx+∫1√x2+2x+3dx
Let I1=∫2x+2√x2+2x+3dx and I2=∫1√x2+2x+3dx
∴∫x+2√x2+2x+3dx=12I1+I2 .........(1)
Then, I1=∫2x+2√x2+2x+3dx
Let x2+2x+3=t
⇒(2x+2)dx=dt
I1=∫dt√t=2√t=2√x2+2x+3 ........ (2)
I1=∫1√x2+2x+3dx
⇒x2+2x+3=x2+2x+1+2=(x+1)2+(√2)2
∴I2=∫1√(x+1)2+(√2)2dx=log|(x+1)+√x2+2x+3| ......... (3)
Using equation (2) and (3) in (1), we obtain
∫x+2√x2+2x+3dx=12[2√x2+2x+3]+log|(x+1)+√x2+2x+3|+C
=√x2+2x+3+log|(x+1)+√x2+2x+3|+C