Let I=∫1x√ax−x2dx
⇒I=∫1x2√ax−1dx ...(1)
Substituing ax−1=t2
Differentiating w.r.t. x
−ax2=2tdtdx⇒dxx2=−2tdta
So,
I=∫1x2√ax−1dx
⇒I=−1a∫2ttdt
⇒I=−2a∫1dt
⇒I=−2at+C
⇒I=−2a√ax−1+C
Hence, ∫1x√ax−x2dx=−2a√a−xx+C
Where C is constant of integration.
Where C is constant of integration.