wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the function sin1xcos1xsin1x+cos1x, x[0,1]

Open in App
Solution

Let I=sin1xcos1xsin1x+cos1xdx
We know that sin1x+cos1x=π2
or cos1x=π2sin1x
We can write sin1xcos1xsin1x+cos1x=sin1xcos1xπ2
=2π(sin1xπ2+sin1x)
=2π(2sin1xπ2)
=4sin1xπ1
Integrate w.r.t to x
sin1xcos1xsin1x+cos1xdx
=(4sin1xπ1)dx
=4πsin1xdxx+C1
Let I1=sin1xdx
Let x=tx=t2
dx=2tdt
I1=sin1t.2tdt=2sin1t.tdt
Consider sin1t.tdt using integration by parts,
Let u=sin1tdu=11t2dt and dv=tdtv=t22
sin1t.tdt=sin1tt22t2211t2dt
=2×t2sin1t22×12t2dt1t2dt+c
=t2sin1tt21t2dt+c
=t2sin1t+t21t2dt+c
=t2sin1t+1t211t2dt+c
=t2sin1t+1t21t211t2dt+c
=t2sin1t+(1t211t2)dt
=t2sin1t+t1t2212sin1t
I1=t2sin1t+t1t2212sin1t
Put t=x
I1=(x)2sin1x+x1(x)2212sin1x
=xsinx+x21x12sin1x
Hence I=4πI1x+C1
=4π⎜ ⎜(x)2sin1x+x1(x)2212sin1x⎟ ⎟x+C1
=4π(xsin1x+xx2212sin1x)x+C1
=sin1x[4xπ2π]+2xx2πx+C1
=sin1x[2(2x1)π]+2xx2πx+C1


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon