Let I=∫sin−1√x−cos−1√xsin−1√x+cos−1√xdx
We know that sin−1√x+cos−1√x=π2
or cos−1x=π2−sin−1x
We can write sin−1√x−cos−1√xsin−1√x+cos−1√x=sin−1√x−cos−1√xπ2
=2π(sin−1√x−π2+sin−1√x)
=2π(2sin−1√x−π2)
=4sin−1√xπ−1
Integrate w.r.t to x
∫sin−1√x−cos−1√xsin−1√x+cos−1√xdx
=∫(4sin−1√xπ−1)dx
=4π∫sin−1√xdx−x+C1
Let I1=∫sin−1√xdx
Let √x=t⇒x=t2
⇒dx=2tdt
∴I1=∫sin−1t.2tdt=2∫sin−1t.tdt
Consider ∫sin−1t.tdt using integration by parts,
Let u=sin−1t⇒du=1√1−t2dt and dv=tdt⇒v=t22
∫sin−1t.tdt=sin−1tt22−∫t221√1−t2dt
=2×t2sin−1t2−2×12∫t2dt√1−t2dt+c
=t2sin−1t−∫t2√1−t2dt+c
=t2sin−1t+∫−t2√1−t2dt+c
=t2sin−1t+∫1−t2−1√1−t2dt+c
=t2sin−1t+∫1−t2√1−t2−1√1−t2dt+c
=t2sin−1t+∫(√1−t2−1√1−t2)dt
=t2sin−1t+t√1−t22−12sin−1t
∴I1=t2sin−1t+t√1−t22−12sin−1t
Put t=√x
I1=(√x)2sin−1√x+√x√1−(√x)22−12sin−1√x
=xsin√x+√x2√1−x−12sin−1√x
Hence I=4πI1−x+C1
=4π⎛⎜
⎜⎝(√x)2sin−1√x+√x√1−(√x)22−12sin−1√x⎞⎟
⎟⎠−x+C1
=4π(xsin−1√x+√x−x22−12sin−1√x)−x+C1
=sin−1√x[4xπ−2π]+2√x−x2π−x+C1
=sin−1√x[2(2x−1)π]+2√x−x2π−x+C1