wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the function sin1xcos1xsin1x+cos1xx[0,1]

Open in App
Solution

Let I=sin1xcos1xsin1x+cos1xdx
It is known that, sin1x+cos1x=π2
I=(π2cos1x)cos1xπ2dx
=2π(π22cos1x)dx
=2ππ21dx4πcos1xdx
=x4πcos1xdx ............. (1)
Let I1=cos1xdx
Also, let x=tdx=2tdt
I1=2cos1ttdt
=2[cos1tt2211t2t22dt]
=t2cos1t+t21t2dt
=t2cos1t1t211t2dt
=t2cos1t1t2dt+11t2dt
=t2cos1tt21t212sin1t+sin1t
=t2cos1tt21t2+12sin1t
From equation (1), we obtain
I=x4π[t2cos1tt21t2+12sin1t]
=x4π[xcos1xx21x+12sin1x]
=x4π[x(π2sin1x)xx22+12sin1x]
=x2x+4xπsin1x+2πxx22πsin1x
=x+2π[(2x1)sin1x]+2πxx2+C
=2(2x1)πsin1x+2πxx2x+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon