Given, ex(1+sinx1+cosx)
=ex⎛⎝sin2x2+cosx2+2sinx2cosx22cos2x2⎞⎠
=ex(sinx2+cosx2)22cos2x2
=12ex⋅(sinx2+cosx2cosx2)2
=12ex(1+tanx2)2
=12ex[1+tan2x2+2tanx2]
=12ex[sec2x2+2tanx2]
ex(1+sinx)dx(1+cosx)=ex[12sec2x2+tanx2] .......... (1)
Let tanx2=f(x)⇒f′(x)=12sec2x2
It is known that, ∫ex{f(x)+f′(x)}dx=exf(x)+C
From equation (1), we obtain
∫ex(1+sinx)(1+cosx)dx=extanx2+C