Integrate the function. ∫1.tan−1xdx
Let I=∫1.tan−1xdx ⇒I=tan−1x∫1dx−∫[ddx(tan−1)∫1dx]dx=xtan−1x−∫11+x2.xdx Let 1+x2=t⇒2x=dtdx⇒dx=dt2x ∴I=xtan−1x−∫xt.dt2x=xtan−1x−12∫1tdt=xtan−1x−12log|t|+C=xtan−1x−12log|1+x2|+C
Integrate the function. ∫xtan−1xdx.
Integrate the following functions. ∫1(1−tanx)dx.