Integrate the function.
∫e2xsinxdx.
Let I=∫e2xsinxdx
On taking sin x as first function and e2x as second function and integrating by parts, we get
∫e2xsinxdx=sinx∫e2xdx−∫[ddx(sinx).∫e2xdx]dx=sinx.e2x2−∫cosx.e2x2dx=sinx.e2x2−12∫e2xcosxdx⇒∫e2xsinxdx=sinx.e2x2−12I1........(i)
where, I1=∫e2xcosxdx
On taking cos x as first function and e2x as second function and integrating by. parts we get
I1=cosx.∫e2xdx−∫[ddx(cosx).∫e2xdx]dx=cosx.e2x2−∫(−sinx).e2x2dx+C1=e2xcosx2+12∫e2xsinxdx+C1
Putting value of I1 in Eq. (i), we get
∫e2xsinxdx=e2xsinx2−12[e2xcosx2+12∫e2xsinxdx+C1]⇒∫e2xsinxdx=e2xsinx2−e2xcosx4−14∫e2xsinxdx−12C1⇒∫e2xsinxdx+14∫e2xsinxdx=e2xsinx2−e2xcosx4−12C1⇒54∫e2xsinxdx=e2xsinx2−e2xcosx4−12C1⇒∫e2xsinxdx=45[e2xsinx2−e2xcosx4−12C1]=25e2xsinx−15e2xcosx−25C1=25e2xsinx−15e2xcosx+C
where, C=−25C1
=e2x5(2sinx−cosx)+C