wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the function.
e2xsinxdx.

Open in App
Solution

Let I=e2xsinxdx
On taking sin x as first function and e2x as second function and integrating by parts, we get
e2xsinxdx=sinxe2xdx[ddx(sinx).e2xdx]dx=sinx.e2x2cosx.e2x2dx=sinx.e2x212e2xcosxdxe2xsinxdx=sinx.e2x212I1........(i)
where, I1=e2xcosxdx
On taking cos x as first function and e2x as second function and integrating by. parts we get
I1=cosx.e2xdx[ddx(cosx).e2xdx]dx=cosx.e2x2(sinx).e2x2dx+C1=e2xcosx2+12e2xsinxdx+C1
Putting value of I1 in Eq. (i), we get
e2xsinxdx=e2xsinx212[e2xcosx2+12e2xsinxdx+C1]e2xsinxdx=e2xsinx2e2xcosx414e2xsinxdx12C1e2xsinxdx+14e2xsinxdx=e2xsinx2e2xcosx412C154e2xsinxdx=e2xsinx2e2xcosx412C1e2xsinxdx=45[e2xsinx2e2xcosx412C1]=25e2xsinx15e2xcosx25C1=25e2xsinx15e2xcosx+C
where, C=25C1
=e2x5(2sinxcosx)+C


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon