Integrate the function.
∫ex(1+sinx1+cosx)dx.
∫ex(11+cosx+sinx1+cosx)dx=∫ex(12cos2x2+2sinx2cosx22cos2x2)dx[∵cos2x=2cos2x−1 and sin2x=2sinxcosx]=∫ex(sec2x22+tanx2)dx=∫ex(tanx2+12sec2x2)dx
Let f(x)=tanx2⇒f′(x)=sec2x22
∴∫ex(tanx2+sec2x22)dx=extanx2+C(∵∫ex[f(x)+f′(x)]dx=exf(x))