Integrate the function. ∫ex(1x−1x2)dx.
LetI=∫ex(1x−1x2)dx.Letf(x)=1x⇒f′(x)=−1x2Here, given integral is of the form∫ex[f(x)+f′(x)]dx=exf(x)∴I=exx+C
Integrate the function. ∫xex(1+x)2dx.
Integrate the function. ∫√1+3x−x2dx
Integrate the function. ∫√1−4x−x2dx.
Integrate the function. ∫xcos−1x√1−x2dx.