Integrate the function.
∫xcos−1x√1−x2dx.
Let I=∫xcos−1x√1−x2dx⇒I=∫cos−1x.x√1−x2dx
Consider cos−1x as first function and x√1−x2 as second function and integrating by parts, we get
I=cos−1x∫x√1−x2dx−∫[ddx(cos−1x)∫x√1−x2dx]dx
Let 1−x2=t2⇒−2x=2tdtdx⇒dx=−txdt
∴I=cos−1x∫xt(−tx)dt−∫[ddx(cos−1x)∫xt(−tx)dt]dx=cos−1x(−t)−∫[(−1)√1−x2(−t)dt]dx[∵1−x2=t2⇒t=√1−x2]=−√1−x2.cos−1x−∫1dx=−√1−x2.cos−1x−x+C