Integrate the function. ∫xex(1+x)2dx.
Let I=∫xex(1+x)2dx=∫ex(x+1)−1(1+x)2dx =∫ex[1(1+x)−1(1+x)2]dx Let f(x)=11+x⇒f′(x)=−1(1+x)2 We know that ∫ex(f(x)+f′(x))dx=exf(x) ⇒I=∫ex{11+x−1(1+x)2}dx=ex1+x+C
Integrate the function. ∫√1+3x−x2dx
Integrate the function. ∫ex(1x−1x2)dx.
Integrate the function. ∫xcos−1x√1−x2dx.
Integrate the following functions. ∫2x1+x2dx.
Integrate the following functions. ∫etan−1x1+x2dx.