Integrate the function.
∫(sin−1x)2dx.
Let I=∫(sin−1x)2dx
Put sin−1x=θ⇒x=sinθ⇒dx=cosθdθ
∴I=∫(sin−1x)2dx=∫θ2cosθdθ
On taking θ2 as first function and cos θ as second function and integrating by parts, we get
=θ2∫cosθdθ−∫[ddθ(θ)2∫cosθdθ]dθ=θ2sinθ−∫2θsinθdθ
Again integrating by parts, we get
I=θ2sinθ−2[θ(−cosθ)−∫1(−cosθ)dθ]+C=θ2sinθ+2θcosθ−2∫cosθdθ+C=θ2sinθ+2θcosθ−2sinθ+C=(sin−1x)2x+2sin−1x√1−sin2θ−2x+C[Putθ=sin−1x and sinθ=x]=x(sin−1x)2+2√1−x2sin−1x−2x+C