Integrate the function. ∫√1−4x−x2dx.
Let I=∫√1−4x−x2dx=∫√−(x2+4x−1−22+22)dx =∫√−[(x+2)2−(√5)2]dx=∫√(√5)2−(x+2)2dx[∵∫√a2−x2dx=x2√a2−x2+a22sin−1xa+C]⇒I=x+22√1−4x−x2+52sin−1(x+2)√5+C
Integrate the function. ∫√1+3x−x2dx
Integrate the function. ∫xcos−1x√1−x2dx.
Integrate the function. ∫ex(1x−1x2)dx.
Integrate the function. ∫√4−x2dx.
Integrate the function. ∫xex(1+x)2dx.