Integrate the function. ∫√4−x2dx.
Let I=∫√4−x2dx=∫√22−x2dx =x2√4−x2+42sin−1x2+C[∵∫√a2−x2dx=x2√a2−x2+a22sin−1xa+C]⇒I=x2√4−x2+2sin−1x2+C
Integrate the function. ∫√1−4x−x2dx.
Integrate the function. ∫ex(1x−1x2)dx.
Integrate the function. ∫√1+3x−x2dx
Integrate the function. ∫xex(1+x)2dx.
Integrate the function. ∫xcos−1x√1−x2dx.