Integrate the function. ∫√x2+4x+1dx.
Let I=∫√x2+4x+1dx=∫√x2+4x+1−22+22dx =∫√(x+2)2−(√3)2dx[∵∫√x2−a2dx=x2√x2−a2−a22log|x+√x2−a2|]⇒I=x+22√x2+4x+1−32log|(x+2)+√x2+4x+1|+C
Integrate the following functions. ∫(4x+2)√x2+x+1 dx.
Integrate the function. ∫√x2+4x−5dx.
Integrate the following functions. ∫x+2√x2−1dx.
Integrate the rational functions. ∫x(x2+1)(x−1)dx.