Integrate the function. ∫√x2+4x+6dx.
Let I=∫√x2+4x+6dx=∫√x2+4x+22+6−4dx =∫√(x+2)2+(√2)2dx[∵∫√x2+a2dx=x2√x2+a2+a22log|x+√x2+a2|]=x+22√x2+4x+6+22log|(x+2)+√x2+4x+6|+C⇒I=x+22√x2+4x+6+log|(x+2)+√x2+4x+6|+C
Integrate the function. ∫√x2+4x−5dx.
Integrate the following functions. ∫5x+3x2+4x+10dx.
Integrate the following functions. ∫(4x+2)√x2+x+1 dx.