wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the function.
xcos1xdx.

Open in App
Solution

Let I=xcos1xdx
Put cos1x=tx=cos tdx=sint dt
I=xcos1xdx=t cos t.sint dt=12t.2sint cost dt=12t.sin2tdt(2sinxcosx=sin2x)
On taking t as first function and sin 2t as second function and integrating by parts, we get
I=12[tsin2tdt{ddt(t).sin2tdt}dt]=12[t(cos2t)2+1.cos2t2dt]=14tcos2t14cos2tdt=14tcos2t14sin2t2+C=14tcos2t18sin2t+C=14t(2cos2t1)18.2sint cost+C[sin2x+cos2x=1sinx=1cos2x]xcos1xdx=14cos1x(2x21)14(1x2)12x+C[put cos1x=t and cos t=x]=14(2x21)cos1x14x1x2+C


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon