Integrate the function.
∫xcos−1xdx.
Let I=∫xcos−1xdx
Put cos−1x=t⇒x=cos t⇒dx=−sint dt
∴I=∫xcos−1xdx=−∫t cos t.sint dt=−12∫t.2sint cost dt=−12∫t.sin2tdt(∵2sinxcosx=sin2x)
On taking t as first function and sin 2t as second function and integrating by parts, we get
I=−12[t∫sin2tdt−∫{ddt(t).∫sin2tdt}dt]=−12[t(−cos2t)2+∫1.cos2t2dt]=14tcos2t−14∫cos2tdt=14tcos2t−14sin2t2+C=14tcos2t−18sin2t+C=14t(2cos2t−1)−18.2sint cost+C[∵sin2x+cos2x=1⇒sinx=√1−cos2x]∴∫xcos−1xdx=14cos−1x(2x2−1)−14(1−x2)12x+C[put cos−1x=t and cos t=x]=14(2x2−1)cos−1x−14x√1−x2+C