Integrate the function. ∫xsin3xdx.
Let I=∫xsin3xdx On taking x as first function and sin 3x as second function and integrating by parts, we get I=x∫sin3xdx−∫[ddx(x)∫sin3xdx]dx =−xcos3x3+∫cos3x3dx(∵∫sinaxdx=−cosaxa)⇒I=−xcos3x3+19sin3x+C