wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the function sin1(2x1+x2)

Open in App
Solution

Let x=tanθdx=sec2θdθ
sin1(2x1+x2)=sin1(2tanθ1+tan2θ)=sin1(sin2θ)=2θ
sin1(2x1+x2)dx=2θsec2θdθ=2θsec2θdθ
Integrating by parts, we obtain
=2[θsec2θdθ{(ddθθ)sec2θdθ}dθ]
=2[θtanθtanθdθ]
=2[θtanθ+log|cosθ|]+C
=2[xtan1x+log11+x2]+C
=2xtan1x+2log(1+x2)12+C
=2xtan1x+2[12log(1+x2)]+C
=2xtan1xlog(1+x2)+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon