Let x=tanθ⇒dx=sec2θdθ
∴sin−1(2x1+x2)=sin−1(2tanθ1+tan2θ)=sin−1(sin2θ)=2θ
⇒∫sin−1(2x1+x2)dx=∫2θ⋅sec2θdθ=2∫θ⋅sec2θdθ
Integrating by parts, we obtain
=2[θ⋅∫sec2θdθ−∫{(ddθθ)∫sec2θdθ}dθ]
=2[θ⋅tanθ−∫tanθdθ]
=2[θtanθ+log|cosθ|]+C
=2[xtan−1x+log∣∣∣1√1+x2∣∣∣]+C
=2xtan−1x+2log(1+x2)12+C
=2xtan−1x+2[−12log(1+x2)]+C
=2xtan−1x−log(1+x2)+C