∫√1+3x−x2dx
=∫√1−(x2−3x)dx
=∫
⎷1−[x2−3x+(32)2−(32)2]dx
=∫
⎷1−[(x−32)2−(32)2]dx
=√1−(x−32)2+(32)2dx
=∫√134−(x−32)2dx
=∫
⎷(√132)2−(x−32)2dx
Using ∫√a2−x2.dx
=12x√a2−x2+a22sin−1xa+C
=x−322
⎷(√132)2−(x−32)2+(√132)22sin−1(x−32)√132+C
=2x−322√134−(x−32)2+1342sin−1(2x−32)√132+C
=2x−34√134−[x2+94−3x]+138sin−12x−3√13+C
=2x−34√1+3x−x2+138sin−1(2x−3√13)+C
Where C is constant of integration