wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the function 1x1+x

Open in App
Solution

I=1x1+x

Put x=cos2θ
dx=2sinθcosθdθ

I=1cosθ1+cosθ(2sinθcosθ)dθ

=2  2sin2θ22cos2θ2(sinθcosθ)dθ

=2sinθ2cosθ2(2sinθ2cosθ2)cosθdθ

=4sin2θ2cosθdθ

=4sin2θ2(2cos2θ21)dθ

=4(2sin2θ2cos2θ2sin2θ2)dθ

=8sin2θ2cos2θ2dθ+4sin2θ2dθ

=2sin2θdθ+4sin2θ2dθ

=2(1cos2θ2)dθ+41cosθ2dθ

=2[θ2sin2θ4]+4[θ2sinθ2]+C

=θ+sin2θ2+2θ2sinθ+C
=θ+sin2θ22sinθ+C
=θ+2sinθcosθ22sinθ+C
=θ+1cos2θcosθ21cos2θ+C
=cos1x+1xx21x+C
=21x+cos1x+x(1x)+C
=21x+cos1x+xx2+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon