I=∫tan−1√1−x1+xdx
Let x=cosθ⇒dx=−sinθdθ
∴I=∫tan−1√1−cosθ1+cosθ(−sinθdθ)
=−∫tan−1
⎷2sin2θ22cos2θ2sinθdθ
=−∫tan−1tanθ2⋅sinθdθ
=−12∫θ⋅sinθdθ
=−12[θ⋅(−cosθ)−∫1⋅(−cosθ)dθ]
=−12[−θcosθ+sinθ]
=12θcosθ−12sinθ
=12cos−1x⋅x−12√1−x2+C
=x2cos−1x−12√1−x2+C
=12(xcos−1x−√1−x2)+C