Integrate ∫x(logx)2dx
Using Integration by parts
Given, ∫x(logx)2dx
Let, I=∫x(logx)2dx
From integration by parts, we know that
∫fx·gx=fx∫gxdx-∫dfxdx∫gxdxdx
Here, take fx=(logx)2 and gx=x
⇒I=(logx)2∫xdx-∫d(logx)2dx∫xdxdx⇒I=(logx)2·x
Apply integration by parts on ∫xlogxdx taking fx=logx and gx=x. Thus,
⇒I=xlogx22-logx∫xdx-∫dlogxdx∫xdxdx⇒I=xlogx22-logx·x22-∫1x·x22dx⇒I=xlogx22-logx·x22-x24+C⇒I=xlogx22-x2logx2+x24+C
Therefore, ∫x(logx)2dx=xlogx22-x2logx2+x24+C