The correct option is
A 12 (−cos(2x+1)) + 16cos3(2x+1)+cWe are given, I=∫sin3(2x+1)dx
[Now, we know that sin3θ=3sinθ−4sin3θ]
So, sin3θ=14(3sinθ−sin3θ)
I=14(3sin(2x+1)−sin(3(2x+1)))dx
=14∫[3sin(2x+1)−sin(6x+3)]dx
So, I=14[∫3sin(2x+1)]dx−14[∫sin(6x+3)]dx
=34(−cos(2x+1))2−14(−cos(6c+3))6+c
I=38(−cos(2x+1)+124(cos(3(2x+1)))+C
Now, cos3θ=4cos3θ−3cosθ
So, I=38(−cos(2x+1)+124(4cos3(2x+1))−3cos(2x+1))+c
=38(−cos(2x+1))+16cos3(2x+1)−18cos(2x+1)+c
I=(38+18)(−cos(2x+1))+16cos3(2x+1)+c
I=12(−cos(2x+1))+16cos3(2x+1)+c.