wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the given equation sin3(2x+1).

A
12 (cos(2x+1)) + 16cos3(2x+1)+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
13 (cos(2x+1)) + 14cos3(2x+1)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12 (cos(2x+1)) - 13cos3(2x+1)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(cos(2x+1)) + cos3(2x+1)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 12 (cos(2x+1)) + 16cos3(2x+1)+c
We are given, I=sin3(2x+1)dx
[Now, we know that sin3θ=3sinθ4sin3θ]
So, sin3θ=14(3sinθsin3θ)
I=14(3sin(2x+1)sin(3(2x+1)))dx
=14[3sin(2x+1)sin(6x+3)]dx
So, I=14[3sin(2x+1)]dx14[sin(6x+3)]dx
=34(cos(2x+1))214(cos(6c+3))6+c
I=38(cos(2x+1)+124(cos(3(2x+1)))+C
Now, cos3θ=4cos3θ3cosθ
So, I=38(cos(2x+1)+124(4cos3(2x+1))3cos(2x+1))+c
=38(cos(2x+1))+16cos3(2x+1)18cos(2x+1)+c
I=(38+18)(cos(2x+1))+16cos3(2x+1)+c
I=12(cos(2x+1))+16cos3(2x+1)+c.

1165687_1060741_ans_c6fb9167a7d64c7abe609acae44b5abc.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon