1(x4−1)=1(x2−1)(x2+1)=1(x+1)(x−1)(1+x2)
Let 1(x+1)(x−1)(1+x2)=A(x+1)+B(x−1)+Cx+D(x2+1)
⇒1=A(x−1)(x2+1)+B(x+1)(x2+1)+(Cx+D)(x2+1)
⇒1=A(x3+x−x2−1)+B(x3+x+x2+1)+Cx3+Dx2−Cx−D
⇒1=(A+B+C)x3+(−A+B+D)x2+(A+B−C)x+(−A+B−D)
Equating the coefficient of x3,x2,x, and constant term, we obtain
A+B+C=0
−A+B+D=0
A+B−C=0
−A+B−D=1
On solving these equations, we obtain
A=−14,B=14,C=0, and D=−12
∴1x4−1=−14(x+1)+14(x−1)−12(x2+1)
⇒∫1x4−1dx=−14log|x−1|+14log|x−1|−12tan−1x+C
=14log∣∣∣x−1x+1∣∣∣−12tan−1x+C