Let 3x−1(x−1)(x−2)(x−3)=A(x−1)+B(x−2)+C(x−3)
⇒3x−1=A(x−2)(x−3)+B(x−1)(x−3)+C(x−1)(x−2) ..........(1)
Substituting x=1,2, and 3 respectively in equation (1), we obtain A=1,B=5, and C=4
∴3x−1(x−1)(x−2)(x−3)=1(x−1)−5(x−2)+4(x−3)
⇒∫3x−1(x−1)(x−2)(x−3)dx=∫{1(x−1)−5(x−2)+4(x−3)}dx
=log|x−1|−5log|x−2|+4log|x−3|+C