3x+5x3−x2−x+1=3x+5(x−1)2(x+1)
Let 3x+5(x−1)2(x+1)=A(x−1)+B(x−1)2+C(x+1)
⇒3x+5=A(x−1)(x+1)+B(x+1)+C(x−1)2
⇒3x+5=A(x2−1)+B(x+1)+C(x2+1−2x) ......... (1)
Substituting x=1 in equation (1), we obtain
B=4
Equating the coefficients of x2 and x, we obtain
A+C=0
B−2C=3
On solving, we obtain
A=−12 and C=12
∴3x+5(x−1)2(x+1)=−12(x−1)+4(x−1)2+12(x+1)
⇒∫3x+5(x−1)2(x+1)dx=−12∫1x−1dx+4∫1(x−1)2dx+12∫1(x+1)dx
=−12log|x−1|+4(−1x−1)+12log|x+1|+C
=12log∣∣∣x+1x−1∣∣∣−4(x−1)+C