5x(x+1)(x2−4)=5x(x+1)(x+2)(x−2)
Let 5x(x+1)(x+2)(x−2)=A(x+1)+B(x+2)+C(x−2)
⇒5x=A(x+2)(x−2)+B(x+1)(x−2)+C(x+1)(x+2) ......... (1)
Substituting x=1,2, and −2 respectively in equation (1), we obtain
A=53,B=−52, and C=56
∴5x(x+1)(x+2)(x−2)=53(x+1)−52(x+2)+56(x−2)
⇒∫5x(x+1)(x2−4)dx=53∫1(x+1)dx−52∫1(x+2)dx+56∫1(x−2)dx
=53log|x+1|−52log|x+2|+56log|x−2|+C