Let x(x−1)(x−2)(x−3)=A(x−1)+B(x−2)+C(x−3)
⇒x=A(x−2)(x−3)+B(x−1)(x−3)+C(x−1)(x−2) ............ (1)
Substituting x=1,2, and 3 respectively in equation (1), we obtain
A=12,B=−2, and C=32
∴x(x−1)(x−2)(x−3)=12(x−1)−2(x−2)+3(x−3)
⇒∫x(x−1)(x−2)(x−3)dx=∫{12(x−1)−2(x−2)+3(x−3)}dx
=12log|x−1|−2log|x−2|+32log|x−3|+C