Let
x(x2+1)(x−1)=Ax+B(x2+1)+C(x−1)
⇒x=(Ax+B)(x−1)+C(x2+1)
⇒x=Ax2−Ax+Bx−B+Cx2+C
Equating the coefficients of x2,x, and constant term, we obtain
A+C=0
−A+B=1
−B+C=0
On solving these equations, we obtain
A=−12,B=12, and C=12
From equation (1), we obtain
∴x(x2+1)(x−1)=(−12x+12)x2+1+12(x−1)
⇒∫x(x2+1)(x−1)=−12∫xx2+1dx+12∫1x2+1dx+12∫1x−1dx
=−14∫2xx2+1dx+12tan−1x+12log|x−1|+C
Consider ∫2xx2+1dx, let (x2+1)=t⇒2xdx=dt
⇒∫2xx2+1dx=∫dtt=log|t|=log|x2+1|
∴∫x(x2+1)(x−1)=−14log|x2+1|+12tan−1x+12log|x−1|+C
=12log|x−1|−14log|x2+1|+12tan−1x+C