∫2x(x2+1)(x2+3).dx
Let x2=t
Differentiate both sides w.r.t. x
⇒2xdx=dt
∫2x(x2+1)(x2+3).dx
=∫dt(t+1)(t+3)
Using partial fraction
1(t+1)(t+3)=At+1+Bt+3
⇒1=A(t+3)+B(t+1)
Putting t=−1
⇒1=A(−1+3)+B(−1+1)
⇒A=12
Similarly putting t=−3
⇒1=A(−3+3)+B(−3+1)
⇒B=−12
Now,
∫1(t+1)(t+3).dt
=∫12(t+1).dt+∫−12(t+3).dt
=12∫1(t+1).dt−12∫1(t+3).dt
=12log|t+1|−12log|t+3|+C
=12log∣∣∣t+1t+3∣∣∣+C
=12log∣∣∣x2+1x2+3∣∣∣+C
[∵t=x2]
Where C is constant of integration.