∫3x+5x3−x2−x+1.dx
We know,
3x+5x3−x2−x+1
=3x+5(x−1)(x2−1)
=3x+5(x−1)(x−1)(x+1)
=3x+5(x+1)(x−1)2
Using partial fraction
(3x+5)(x+1)(x−1)2
=Ax+1+Bx−1+C(x−1)2
⇒3x+5=A(x−1)2+B(x2−1)+C(x+1)
Put x=1
⇒3×1+5
=A(1−1)2+B(12−1)+C(1+1)
⇒8=2C
⇒C=4
Putting x=−1
⇒3(−1)+5
=A(−1−1)2+B((−1)2−1)+C(−1+1)
⇒−3+5=A(−2)2
Putting x=0
⇒3(0)+5
=A(0−1)2+B(0−1)+C(0−1)
⇒5=A−B+C
⇒5=12−B+4
[∵A=12,C=4]
⇒1−12=−B⇒B=−12
Putting the values of A,B and C
3x+5(x+1)(x−1)2=12(x+1)−12(x−1)+4(x−1)2
Now,
∫3x+5x3−x2−x+1.dx=∫[12(x+1)−12(x−1)+4(x−1)2].dx
=12∫dxx+1−12∫dxx−1+4∫dx(x−1)2
=12log|x+1|−12log|x−1|+4∫(x−1)−2dx+C
=12log∣∣∣x+1x−1∣∣∣+4[(x−1)−2+1−2+1]+C
=12log∣∣∣x+1x−1∣∣∣−4(x−1)+C
Where C is constant of integration