wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the rational function:
3x+5x3x2x+1

Open in App
Solution

3x+5x3x2x+1.dx

We know,

3x+5x3x2x+1

=3x+5(x1)(x21)

=3x+5(x1)(x1)(x+1)

=3x+5(x+1)(x1)2

Using partial fraction

(3x+5)(x+1)(x1)2

=Ax+1+Bx1+C(x1)2

3x+5=A(x1)2+B(x21)+C(x+1)

Put x=1

3×1+5

=A(11)2+B(121)+C(1+1)

8=2C

C=4

Putting x=1

3(1)+5

=A(11)2+B((1)21)+C(1+1)

3+5=A(2)2

Putting x=0

3(0)+5

=A(01)2+B(01)+C(01)

5=AB+C

5=12B+4

[A=12,C=4]

112=BB=12

Putting the values of A,B and C

3x+5(x+1)(x1)2=12(x+1)12(x1)+4(x1)2

Now,
3x+5x3x2x+1.dx=[12(x+1)12(x1)+4(x1)2].dx

=12dxx+112dxx1+4dx(x1)2

=12log|x+1|12log|x1|+4(x1)2dx+C

=12logx+1x1+4[(x1)2+12+1]+C

=12logx+1x14(x1)+C

Where C is constant of integration

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon