∫x(x+1)(x+2).dx
Using partial fraction
⇒x(x+1)(x+2)=A(x+1)+B(x+2)
⇒x=A(x+2)+B(x+1)
⇒−1=A(−1+2)+B(−1+1)
⇒A=−1
⇒−2=A(−2+2)+B(−2+1)
⇒−2=−B⇒B=2
⇒x(x+1)(x+2)=−1(x+1)+2(x+2)
Now,
∫x(x+1)(x+2).dx
=∫−1(x+1).dx+∫2(x+2).dx
=−log|x+1|+2log|x+2|+C
=−log|x+1|+log|x+2|2+C
=log∣∣∣(x+2)2x+1∣∣∣+C
Where C is constant of integration