wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the rational function: x(x1)(x2)(x3)

Open in App
Solution

x(x1)(x2)(x3).dx
Using partial fraction x(x1)(x2)(x3)
=Ax1+Bx2+Cx3
x=A(x2)(x3)
+B(x1)(x3)
+C(x1)(x2)
Putting x =1
1=A(12)(13)
+B(11)(13)
+C(11)(12)
1=A(1)(2)
A=12
Similarly putting x =2,
2
=A(22)(23)+B(21)(23)+C(21)(22)
2=B(1)(1)
B=2
Similarly putting x =3,
3=A(32)(33)
+B(31)(33)
+C(31)(32)
3=C×(2)(1)
C=32
Now, putting the values of A, B and C
x(x1)(x2)(x3)
=12x1+2x2+32x3
=12(x1)2x2+32(x3)
Now,
x(x1)(x2)(x3)dx
=(12(x1)2x2+32(x3)).dx
=121x1.dx21x2.dx
+321x3.dx
=12log|x1|2log|x2|
+32log|x3|+C
Where C is constant of integration

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon