∫x(x−1)(x−2)(x−3).dx
Using partial fraction ⇒x(x−1)(x−2)(x−3)
=Ax−1+Bx−2+Cx−3
⇒x=A(x−2)(x−3)
+B(x−1)(x−3)
+C(x−1)(x−2)
Putting x =1
⇒1=A(1−2)(1−3)
+B(1−1)(1−3)
+C(1−1)(1−2)
⇒1=A(−1)(−2)
⇒A=12
Similarly putting x =2,
⇒2
=A(2−2)(2−3)+B(2−1)(2−3)+C(2−1)(2−2)
⇒2=B(1)(−1)
⇒B=−2
Similarly putting x =3,
⇒3=A(3−2)(3−3)
+B(3−1)(3−3)
+C(3−1)(3−2)
⇒3=C×(2)(1)
⇒C=32
Now, putting the values of A, B and C
⇒x(x−1)(x−2)(x−3)
=12x−1+−2x−2+32x−3
=12(x−1)−2x−2+32(x−3)
Now,
∫x(x−1)(x−2)(x−3)dx
=∫(12(x−1)−2x−2+32(x−3)).dx
=12∫1x−1.dx−2∫1x−2.dx
+32∫1x−3.dx
=12log|x−1|−2log|x−2|
+32log|x−3|+C
Where C is constant of integration