Let sinx=t⇒cosxdx=dt
∴∫cosx(1−sinx)(2−sinx)dx=∫dt(1−t)(2−t)
Let 1(1−t)(2−t)=A(1−t)+B(2−t)
⇒1=A(2−t)+B(1−t) ............. (1)
Substituting t=2 and then t=1 in equation (1), we obtain
A=1 and B=−1
∴1(1−t)(2−t)=1(1−t)−1(2−t)
⇒∫cosx(1−sinx)(2−sinx)dx=∫{11−t−1(2−t)}dt
=−log|1−t|+log|2−t|+C
=log∣∣∣2−t1−t∣∣∣+C
=log∣∣∣2−sinx1−sinx∣∣∣+C