wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the rational function cosx(1sinx)(2sinx)

Open in App
Solution

Let sinx=tcosxdx=dt
cosx(1sinx)(2sinx)dx=dt(1t)(2t)
Let 1(1t)(2t)=A(1t)+B(2t)
1=A(2t)+B(1t) ............. (1)
Substituting t=2 and then t=1 in equation (1), we obtain
A=1 and B=1
1(1t)(2t)=1(1t)1(2t)
cosx(1sinx)(2sinx)dx={11t1(2t)}dt
=log|1t|+log|2t|+C
=log2t1t+C
=log2sinx1sinx+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon