(x2+1)(x2+2)(x2+3)(x2+4)=1−(4x2+10)(x2+3)(x2+4)
Let 4x2+10(x2+3)(x2+4)=Ax+B(x2+3)+Cx+D(x2+4)
⇒4x2+10=(Ax+B)(x2+4)+(Cx+D)(x2+3)
4x2+10=Ax3+4Ax+Bx2+4B+Cx3+3Cx+Dx2+3D
4x2+10=(A+C)x3+(B+D)x2+(4A+3C)x+(4B+3D)
Equating the coefficients of x3,x2,x, and constant term, we obtain
A+C=0
B+D=4
4A+3C=0
4B+3D=10
On solving these equations, we obtain
A=0,B=2,C=0, and D=6
∴4x2+10(x2+3)(x2+4)=−2(x2+3)+6(x2+4)
(x2+1)(x2+2)(x2+3)(x2+4)=1−(−2(x2+3)+6(x2+4))
⇒∫(x2+1)(x2+2)(x2+3)(x2+4)dx=∫{1+2(x2+3)−6(x2+4)}dx
=∫{1+2x2+(√3)2−6x2+22}
=x+2(1√3tan−1x√3)−6(12tan−1x2)+C
=x+2√3tan−1x√3−3tan−1x2+C