Integrate the rational functions. ∫1ex−1dx
Let I=∫1ex−1dx On multiplying numerator and denominator by e−x, we get I=∫e−x1−e−xdx Put 1−e−x=t⇒−e−x(−1)=dtdx⇒dx=dte−x⇒e−xdx=dt ∴I=∫dtt=log|t|+C=log|1−e−x|+C=log∣∣ex−1ex∣∣+C
Integrate the rational functions. ∫1x(xn+1)dx
Integrate the rational functions. ∫1x(x4−1)dx.
Integrate the rational functions. ∫1x4−1dx
Integrate the rational functions. ∫x3+x+1x2−1dx.