Integrate the rational functions.
∫1x2−9dx
∫1x2−9dx=∫1x2−32dx=∫1(x+3)(x−3)dx
Let 1(x+3)(x−3)=A(x+3)+B(x−3)
⇒1=A(x−3)+B(x+3)⇒1=x(A+B)+(−3A+3B)
On equating the coefficients of x and constant term on both sides, we get
A+B=0 and -3A+3B=1
On solving, we get A=−16 and B=16
∴∫1(x+3)(x−3)dx=∫−16(x+3)+∫16(x−3)dx=−16log|x+3|+16log|x−3|+C=16log∣∣x−3x+3∣∣+C[∵logb−loga=logba]