wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the rational functions.
1x2x(12x)dx.

Open in App
Solution

Let I=1x2x(12x)dx. Here, degree of numerator is equal to degree of denominator, so divide the numerator by denominator.
Thus, 1x2x(12x)=x212x2x=12+12x12x2x
I=12dx+12x1(2x2x)dxI=I1+I2.......(i)
where, I1=12dx and I2=12x1(2x2x)dx
Now, I1=12dx=12x+C1
and I2=12x12x2xdx
Let 12x1(2x2x)=Ax+B(2x1)12x1(2x2x)=A(2x1)+Bxx(2x1)
12x1=2AxA+Bx12x1=x(2A+B)A

2A+B=12.....(i)
and A=1A=1....(ii)
From Eq. (i), 2×1+B=12
B=122=32I2=[1x32(2x1)]dx=1xdx3212x1dxI2=logx32log|2x1|2+C2
On putting the values of I1 and I2 in Eq (i), we get
I=12x+logx34log|2x1|+C(C1+C2=C )


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Visualising the Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon