Integrate the rational functions.
∫1−x2x(1−2x)dx.
Let I=∫1−x2x(1−2x)dx. Here, degree of numerator is equal to degree of denominator, so divide the numerator by denominator.
Thus, 1−x2x(1−2x)=x2−12x2−x=12+12x−12x2−x
∴I=∫12dx+∫12x−1(2x2−x)dx⇒I=I1+I2.......(i)
where, I1=∫12dx and I2=∫12x−1(2x2−x)dx
Now, I1=∫12dx=12x+C1
and I2=∫12x−12x2−xdx
Let 12x−1(2x2−x)=Ax+B(2x−1)⇒12x−1(2x2−x)=A(2x−1)+Bxx(2x−1)
⇒12x−1=2Ax−A+Bx⇒12x−1=x(2A+B)−A
2A+B=12.....(i)
and −A=−1⇒A=1....(ii)
From Eq. (i), 2×1+B=12
⇒B=12−2=−32∴I2=∫[1x−32(2x−1)]dx=∫1xdx−32∫12x−1dx⇒I2=logx−32log|2x−1|2+C2
On putting the values of I1 and I2 in Eq (i), we get
I=12x+logx−34log|2x−1|+C(C1+C2=C )