Integrate the rational functions.
∫1x4−1dx
∫1x4−1dx=∫1(x2−1)(x2+1)dx [∵a2−b2=(a+b)(a−b)]
Let 1(x2−1)(x2+1)=Ax+B(x2+1)+Cx+D(x2−1)
⇒1(x2+1)(x2+1)=(Ax+B)(x2−1)+(Cx+D)(x2+1)(x2+1)(x2−1)⇒1=Ax3+Bx2−Ax−B+Cx3+x2D+Cx+D⇒1=x3(A+C)+x2(B+D)+x(−A+C)+(−B+D)
On comparing the coefficients of x3,x2, x and constant term on both sides, we get
A+C=0 ...(i)
B+D =0 ...(ii)
-A+C =0 ...(iii)
and -B+D =1 ....(iv)
On adding Eqs. (i) and (iii), we get
2C=0⇒C=0⇒C=0, then A=0 [from Eq.(i)]
On adding Eqs.(ii)and (iv),we get 2D=1⇒D=12
On putting the value of D in Eq. (iv), we get
−B+12=1⇒B=−12∴A=0,B=−12,C=0 and D=12∴∫1(x4−1)dx=∫Ax+B(x2+1)dx+∫Cx+D(x2−1)dx=−12∫1x2+1dx+12∫1x2−1dx=−12tan−1x+12.12log∣∣x−1x+1∣∣+C=−12tan−1x+14log∣∣x−1x+1∣∣+C
Alternative Method
∫1(x2−1)(x2+1)dx
On putting x2=t, we get
1(t−1)(t+1)=A(t−1)+B(t+1) [by partial fraction]....(i)⇒1(t−1)(t+1)=A(t+1)+B(t−1)(t−1)(t+1)⇒1=At+A+Bt−B⇒1=t(A+B)+(A−B)
On comparing the coefficients of t and constant term on both sides, we get
A+B =0 ....(ii)
A - B =1 ......(iii)
On adding Eqs.(ii) and (iii), we get
A=12, and from Eq. (iii),B=−12
On putting the values of A and B in Eq. (i), we get
1(t−1)(t+1)=12t−1+−12t+1⇒1(x2−1)(x2+1)=12×1x2−1−12×1x2−1 [on putting t =x2]∴∫dx(x2−1)(x2+1)=−12∫1x2+1dx+12∫1x2−1dx=−12tan−1x+12.12log∣∣x−1x+1∣∣+C=−12tan−1x+14log∣∣x−1x+1∣∣+C