Integrate the rational functions.
∫1x(x4−1)dx.
Let I=∫1x(x4−1)dx=∫x3x4(x4−1)dx=∫x3x4(x4−1)dx=14∫4x3x4(x4−1)dx
Put x4=t⇒4x3=dtdx⇒dx=dt4x3
∴I=14∫4x3t(t−1)dt4x3=14∫dtt(t−1)
Let 1t(t−1)=At+B(t−1)⇒1=A(t−1)+Bt.....(i)
On substituting t =0 and 1 in Eq. (i), we get
A=-1 and B =1
∴1t(t−1)=−11+1t−1∴I=14∫(−1t+1t−1)dt=14−log|t||t−1|+C=14log∣∣t−1t∣∣+C=14log∣∣x4−1x4∣∣+C (Put t=x4)