Integrate the rational functions.
∫1x(xn+1)dx
Let I=∫1x(xn+1)dx=∫xn−1xn(xn+1)dx
Put xn=t⇒nxn−1dx=dt⇒xn−1dx=1ndt
∴I=∫xn−1xn(xn+1)dx=1n∫1t(t+1)dt......(i)
Now, 1t(t+1)=At+B(t+1)⇒1=A(1+t)+Bt.....(ii)
On substituting t =0, -1 in Eq. (ii), we get A =1 and B =-1
∴1t(t+1)=1t−1(t+1)
∴I=1n∫(1t−1(t+1))dt [from Eq.(i)]
=1n[log|t|−log|t+1|]+C=1n[log|xn|−log|xn+1|]+C [put t=xn]=1nlog∣∣xnxn+1∣∣+C