Integrate the rational functions.
∫2(1−x)(1+x2)dx
Let 2(1−x)(1+x2)=A1−x+Bx+C1+x2
∴2(1−x)(1+x2)=A(1+x2)+(Bx+C)(1−x)(1−x)(1+x2)
⇒2=A+Ax2+Bx+C−Bx2−Cx⇒2=x2(A−B)+x(B−C)+(A+C)
On comparing the coefficients of x2, x and constant term on both sides, we get
A−B=0⇒A=B.......(i)B−C=0⇒B−C........(ii)
and A+C=2........(iii)
From Eqs. (i) and (ii), we get A =C put this value in Eq. (iii), we get
2A=2⇒A=1
Put the value of A in Eqs. (i) and (iii), we get B =1 and C =1
∴∫2(1−x)(1+x2)dx=∫{11−x+x+1x2+1}dx∫11−xdx+12∫2xx2+1dx+∫1x2+1dx=−log|1−x|+12log(1+x2)+tan−1x+C[Let x2+1=t⇒2xdx=dt∴∫2xx2+1dx=∫1tdt=logt]