Integrate the rational functions.
∫2x−3(x2−1)(2x+3)dx.
∫2x−3(x2−1)(2x+3)dx=∫2x−3(x−1)(x+1)(2x+3)dx
Let 2x−3(x−1)(x+1)(2x+3)=A(x−1)+B(x+1)+C(2x+3)
⇒2x−3(x−1)(x+1)(2x+3)=A(2x+3)(x+1)+B(x−1)(2x+3)+C(x−1)(x+1)(x−1)(x+1)(2x+3)⇒2x−3=A(2x2+3x+2x+3)+B(2x2−2x+3x)+C(x2−1)⇒2x−3=x2(2A+2B+C)+x(5A+B)+(3A−3B−C)
On comparing the coefficients of x2,x and constant term on both sides, we get
2A+2B+C=0......(i)5A+B=2⇒B=2−5A....(ii)and 3A−3B−C=−3......(iii)On putting the value of B in Eqs.(i) and (iii),we get2A+2(2−5A)+C=0⇒2A+4−10A+C=0⇒−8A+C=−4......(iv)and 3A−3(2−5A)−C=−3⇒3A−6+15A−C=−3⇒18A−C=3......(v)On adding Eqs.(iv) and (v),we get10A=−1⇒A=−110On putting the value of A in Eq.(ii),we getB=2−5(−110)⇒B=2+12=52On putting the values of A and B in Eq.(i),we get2(−110)+2(52)+C=0⇒−15+5+C=0⇒C=245∴A=−110,B=52 and C=−245∴∫2x−3(x2−1)(2x+3)dx=∫(−1)10(x−1)dx+52∫1x+1dx−245∫12x+3dx=−110log|x−1|+52log|x+1|−245log|2x+3|2+C=52log|x+1|−110log|x−1|−125log|2x+3|+C