Integrate the rational functions.
∫2x(x2+1)(x2+3)dx.
Let I=∫2x(x2+1)(x2+3)dx
Put x2=t⇒2x=dtdx⇒dx=dt2x
∴I=∫2x(t+1)(t+3)dt2x=∫1(t+1)(t+3)dt
Let 1(t+1)(t+3)=At+1+Bt+3=At+3A+Bt+B(t+1)(t+3)
⇒1=(A+B)t+(3A+B)
On comparing the coefficients of t and constant terms on both sides, we get
A+B=0 .....(i)
and 3A+B =1 ....(ii)
On subtracting Eq. (ii)from Eq. (i), we get
2A=1⇒A=12
On putting the value of A in Eq. (i), we get B=−12
∴I=12∫1t+1dt−12∫1t+3dt=12log|t+1|−12log|t+3|+C=12log∣∣t+1t+3∣∣+C=12log∣∣x2+1x2+3∣∣+C [Put t=x2]