Integrate the rational functions.
∫3x−1(x+2)2dx.
Let 3x−1(x+2)2=A(x+2)+B(x+2)2⇒3x−1=A(x+2)+B
On equating the coefficients of x and constant term on both sides, we get
A=3 and 2A+B =-1
⇒2(3)+B=−1⇒B=−7∴3x−1(x+2)2=3(x+2)−7(x+2)2∴∫3x−1(x+2)2=3∫1(x+2)dx−7∫1(x+2)2dx=3log|x+2|−7(−1x+2)+C=3log|x+2|+7x+2+C