Integrate the rational functions.
∫3x+5x3−x2−x+1dx.
∫3x+5x3−x2−x+1dx=∫3x+5(x2−1)(x−1)dx=∫3x+5(x−1)(x+1)(x−1)dx=∫3x+5(x−1)2(x+1)dx
Let 3x+5(x−1)2(x+1)=Ax−1+B(x−1)2+Cx+1
⇒3x+5(x−1)2(x+1)=A(x−1)(x+1)+B(x+1)+C(x−1)2(x−1)2(x+1)⇒3x+5=A(x2−1)+Bx+B+B+C(x2+1−2x)⇒3x+5=x2(A+C)+x(B−2C)+(−A+B+C)
On comparing the coefficients of x2, x and constant term both sides, we get
A+C=0⇒A=−C.........(i)
B−2C=3.......(ii)
and −A+B+C=5.......(iii)
On comparing the value of A from Eq. (i) in Eq. (iii), we get
−(−C)+B+C=5⇒B+2C=5......(iv)
On adding Eq.(ii)and Eq.(iv), we get 2B=8 ⇒B=4
On putting the value of B in Eq.(ii), we get 4−2C=3⇒1=2C⇒C=12
Also, A=−C=−12
∴∫3x+5(x−1)2(x+1)dx=∫(−12x−1+4(x−1)2+12x+1)dx=−12∫1x−1dx+4∫1(x−1)2dx+12∫1x+1dx=−12log|x−1|+4(x−1)−2+1(−2+1)+12log|x+1|+C=12log∣∣x+1x−1∣∣−4x−1+C[∴logb−loga=log(ba)]