wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate the rational functions.
3x+5x3x2x+1dx.

Open in App
Solution

3x+5x3x2x+1dx=3x+5(x21)(x1)dx=3x+5(x1)(x+1)(x1)dx=3x+5(x1)2(x+1)dx
Let 3x+5(x1)2(x+1)=Ax1+B(x1)2+Cx+1
3x+5(x1)2(x+1)=A(x1)(x+1)+B(x+1)+C(x1)2(x1)2(x+1)3x+5=A(x21)+Bx+B+B+C(x2+12x)3x+5=x2(A+C)+x(B2C)+(A+B+C)
On comparing the coefficients of x2, x and constant term both sides, we get
A+C=0A=C.........(i)
B2C=3.......(ii)
and A+B+C=5.......(iii)
On comparing the value of A from Eq. (i) in Eq. (iii), we get
(C)+B+C=5B+2C=5......(iv)
On adding Eq.(ii)and Eq.(iv), we get 2B=8 B=4
On putting the value of B in Eq.(ii), we get 42C=31=2CC=12
Also, A=C=12
3x+5(x1)2(x+1)dx=(12x1+4(x1)2+12x+1)dx=121x1dx+41(x1)2dx+121x+1dx=12log|x1|+4(x1)2+1(2+1)+12log|x+1|+C=12logx+1x14x1+C[logbloga=log(ba)]


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
L'hospitals Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon